IGBT in TO-247

Features

- 650V 40A,VCE(sat)(typ.) = 2È V@40A
- Field Stop IGBT Technology
- ■10µs Short Circuit Capability
- Square RBSOA
- Positive VCE (on) Temperature Coefficient

Mechanical Data

- Case: TO-247 (plastic package). Lead free; RoHS compliant
- Molding Compound Flammability Rating: UL 94 V-0
- **Terminals:** High temperature soldering guaranteed: 260 °C/10 sec. at terminals

Symbol 2.Collector 1.Gate 3.Emitter

Benefits

- High Efficiency for Motor Control
- Rugged Performance
- Excellent Current Sharing in Parallel Operation

Applications

CREATEK's IGBTs offer lower losses and higher energy for application such as motor drive ,UPS, inverter and other soft switching applications.

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	650	V
V _{GES}	Gate-Emitter Voltage	±30	V
I _C	Continuous Collector Current (T _c =25)	80	A
IC	Continuous Collector Current (T _c =100)	40	A
I _{CM}	Pulsed Collector Current (Note 1)	160	A
١ _F	Diode Continuous Forward Current (T_c =100)	40	A
I _{FM}	Diode Maximum Forward Current (Note 1)	160	A
t _{sc}	Short Circuit Withstand Time	10	us
lsc	Short Circuit Current	220	А
PD	Maximum Power Dissipation (T _C =25)	312	W
PD	Maximum Power Dissipation (Tc=100)	125	W
TJ	Operating Junction Temperature Range	-55 to +150	
T _{STG}	Storage Temperature Range	-55 to +150	

Absolute Maximum Ratings

Thermal Characteristics

Symbol	Parameter	Max.	Units
R _{th j-c}	Thermal Resistance, Junction to case for IGBT	0.40	°C/ W
R _{th j-c}	Thermal Resistance, Junction to case for Diode	0.81	°C/W
R _{th j-a}	Thermal Resistance, Junction to Ambient	80	°C/W

CXG40N65HSEU

CREATEK Microelectronics

CXG40N65HSEU

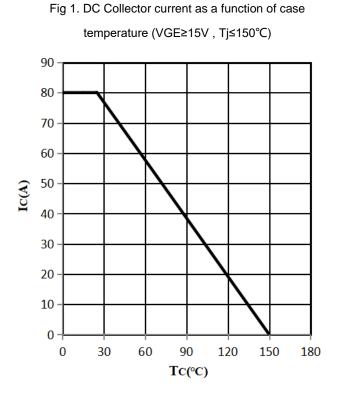
CREATEK Microelectronics

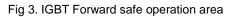
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	650		-	V
I _{CES}	Collector-Emitter Leakage Current	V _{CE} = 650V, V _{GE} = 0V	-	-	250	uA
	Gate Leakage Current, Forward	V _{GE} =30V, V _{CE} = 0V	-	-	100	nA
GES	Gate Leakage Current, Reverse	V _{GE} = -30V, V _{CE} = 0V	-	-	-100	nA
V _{GE(th)}	Gate Threshold Voltage	V_{GE} = V_{CE} , I_C = 250uA	4.0		5.5	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} =15V, I _C = 40A	-	2.3		V
Qg	Total Gate Charge	V _{cc} =480V	-	142		nC
Qge	Gate-Emitter Charge	V _{GE} =15V	-	19		nC
Qgc	Gate-Collector Charge	I _C =40A	-	75		nC
t _{d(on)}	Turn-on Delay Time		-	23	-	ns
t _r	Turn-on Rise Time	V_{CC} =400V V_{GE} =15V I_{C} =40A R_{G} =10 Ω Inductive Load	-	52	-	ns
t _{d(off)}	Turn-off Delay Time		-	121	-	ns
t _f	Turn-off Fall Time		-	30	-	ns
Eon	Turn-on Switching Loss	T _c =25 ℃	-	1.05	-	mJ
Eoff	Turn-off Switching Loss		-	0.60	-	mJ
Cies	Input Capacitance	V _{CF} =25V	-	1550	-	рF
Coes	Output Capacitance	V _{GE} =0V	-	220	-	рF
Cres	Reverse Transfer Capacitance	f = 1MHz	-	105	-	рF
R _{Gint}	Integrated gate resistor	f=1M;Vpp=1V		1.50		Ω

Electrical Characteristics of Diode (TC=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _F	Diode Forward Voltage	I _F =40A	ŀ	1.35		V
trr	Diode Reverse Recovery Time	V _{CE} = 400V	ŀ	100		ns
l _{rrm}	Diode peak Reverse Recovery Current	I _F = 40A	-	16.5		А
Qrr	Diode Reverse Recovery Charge	dI _F /dt = 500A/us	-	980		nC

Notes:


1. Repetitive Rating: Pulse width limited by maximum junction temperature


[∞]**€REATEK**

CXG40N65HSEU

CREATEK Microelectronics

Typical Characteristics

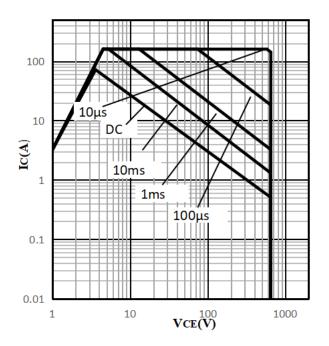
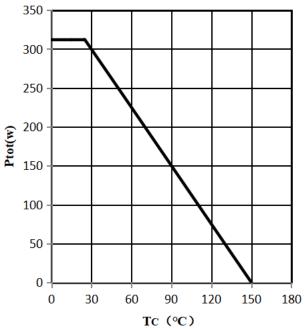
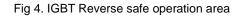
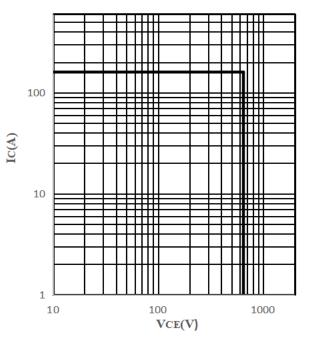





Fig 2. Power dissipation as a function of case temperature (Tj≤150°C)

[∞]**€REATEK**

CXG40N65HSEU

CREATEK Microelectronics

Typical Characteristics

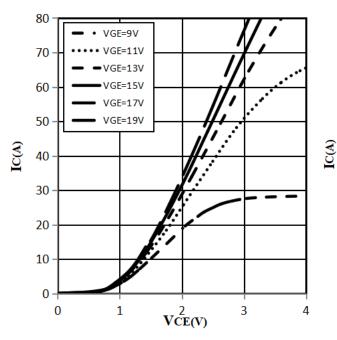
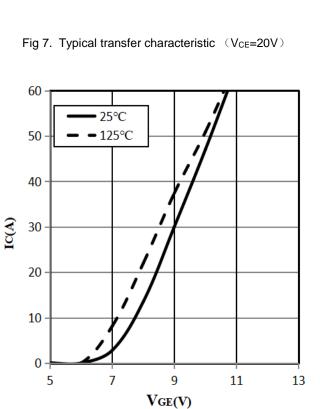



Fig 5. Typical output characteristic (Tj=25°C)

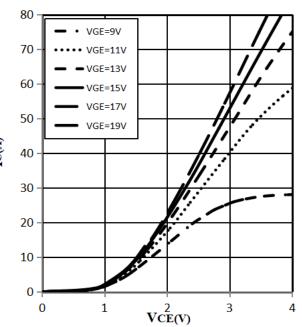
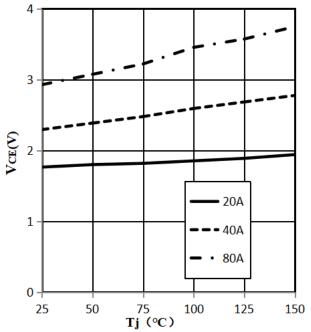



Fig 6. Typical output characteristic (Tj=125°C)

Fig 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE=15V)

CXG40N65HSEU

CREATEK Microelectronics

Typical Characteristics

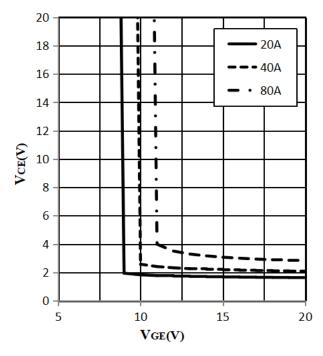


Fig 9. Typical collector-emitter saturation voltage as a

function of VGE (Tj=25°C)

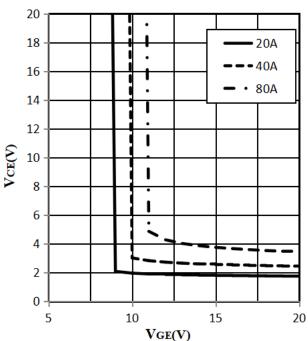


Fig 10. Typical collector-emitter saturation voltage as a

function of VGE (Tj=125°C)

Fig 11. Typical switch energy as a function of Ic (inductive load, $T_{j}=25^{\circ}C$, $V_{CE}=400V, V_{GE}=15V, R_{G}=10\Omega$)

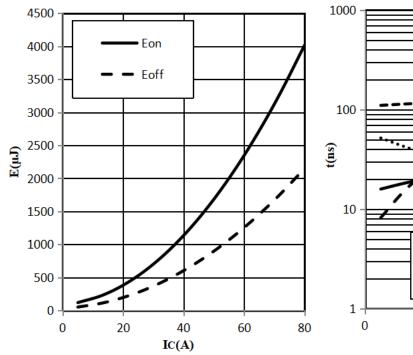
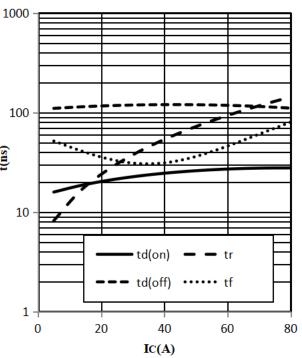



Fig 12. Typical switch time as a function of Ic (inductive load, $T_j=25^{\circ}$ C, $V_{CE}=400$ V, $V_{GE}=15$ V, $R_G=10\Omega$)

CXG40N65HSEU

CREATEK Microelectronics

Typical Characteristics

Fig 13. Typical switch energy as a function of R_G (inductive load, T_j=25°C, V_{CE}=400V,V_{GE}=15V,Ic=40A)

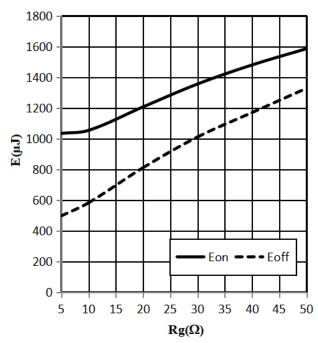
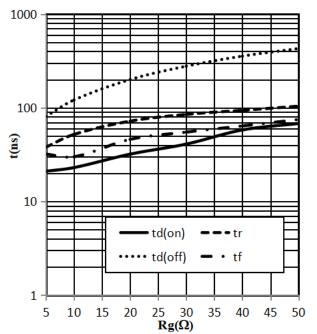
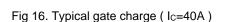




Fig 15. Typical capacitance as a function of collectoremitter voltage (V_{GE} =0V,f=1MHz)

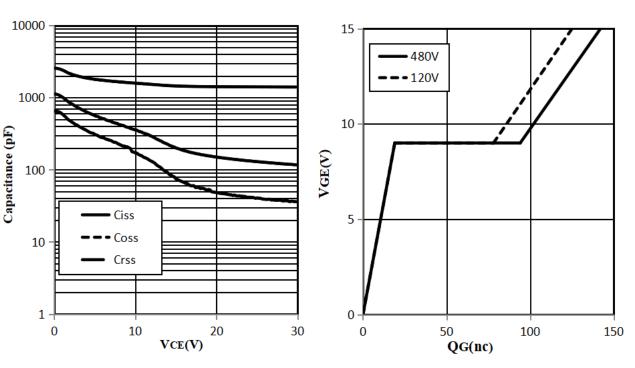


Fig 14. Typical switch time as a function of R_G

(inductive load, $T_j=25^{\circ}C$, $V_{CE}=400V$, $V_{GE}=15V$, Ic=40A)

CXG40N65HSEU

CREATEK Microelectronics

Typical Characteristics

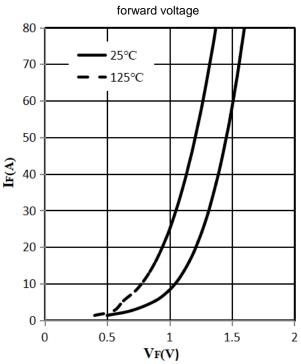
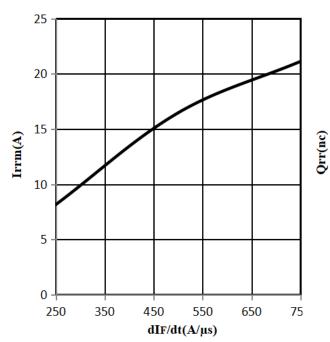
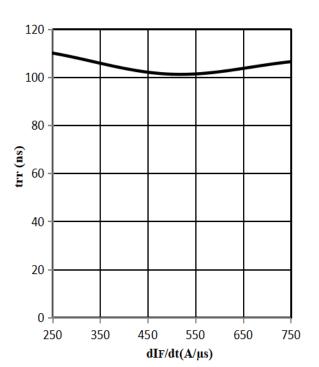
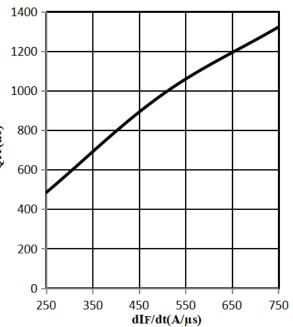
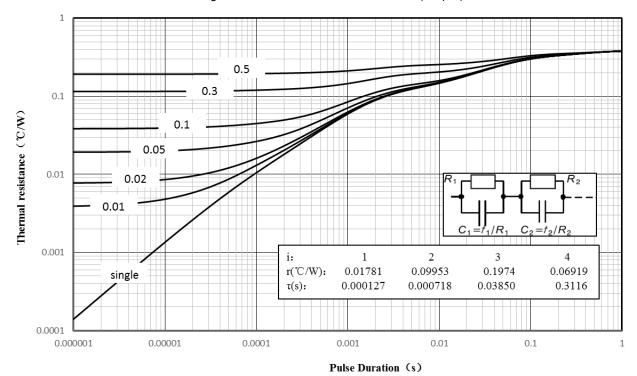



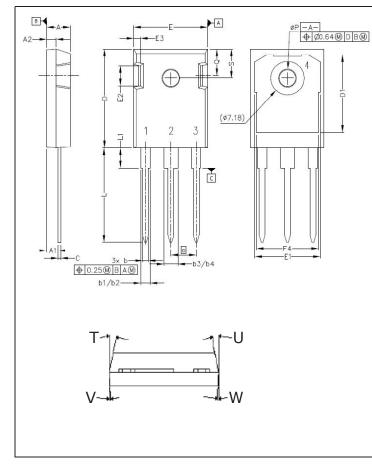
Fig 17. Typical diode forward current as a function of

Fig 19. Typical Irrm as a function of dIF/dt (IF=40A)


Fig 18. Typical trr as a function of dIF/dt (IF=40A)

Typical Characteristics


Fig 21. IGBT transient thermal resistance(D=tp/T)

CXG40N65HSEU

CREATEK Microelectronics

Package Dimensions

DOG	Inc	hes	Millim	neters
POS	Min	Max	Min	Max
А	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.042	.052	1.07	1.33
b1	.075	.095	1.91	2.41
b2	.075	.085	1.91	2.16
b3	.113	.133	2.87	3.38
b4	.113	.123	2.87	3.13
С	.022	.027	0.55	0.68
D	.819	.831	20.80	21.10
D1	.640	.695	16.25	17.65
D2	.037	.049	0.95	1.25
E	.620	.635	15.75	16.13
E1	.516	.557	13.10	14.15
E2	.145	.201	3.68	5.10
E3	.039	.075	1.00	1.90
E4	.487	.529	12.38	13.43
e	.214	BSC	5.44	BSC
N	3	3	3	
L	.780	.800	19.81	20.32
L1	.161	.173	4.10	4.40
ØP	.138	.144	3.51	3.65
Q	.216	.236	5.49	6.00
S	.238	.248	6.04	6.30
Т	9°	11°	9°	11°
U	9°	11°	9°	11°
V	2°	8°	2°	8°
W	2°	8°	2°	8°

Ordering information

Order code	Package	Packaging option	Base quantity	Packaging specification
CXG40N65HSEU	TO-247	Tube/BOX	2250pcs / BOX	

Revision history

Date	Revision	Changes
23-May-2017	1.0	Initial release

CXG40N65HSEU

CREATEK Microelectronics

CAUTION / WARNING

Information in this document is believed to be accurate and reliable. However, CREATEK does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Users should independently evaluate the suitability of and test each product selected for their own applications, and CREATEK assumes no liability whatsoever relating to the choice, selection or use of the CREATEK products and services described herein.

CREATEK reserves the right to change or update, without notice, any information contained in this publication; to change, without notice, the design, construction, processing, or specification of any product; and to discontinue or limit production or distribution of any product.

Information in this document supersedes and replaces all information previously supplied.

Products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an CREATEK product can reasonably be expected to result in personal injury, death or severe property or environmental damage. CREATEK accepts no liability for inclusion and/or use of CREATEK products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Resale of CREATEK products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by CREATEK for the CREATEK product or service described herein and shall not create or extend in any manner whatsoever, any liability of CREATEK.

CREATEK expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. CREATEK only obligations are those in the CREATEK Standard Terms and Conditions of Sale and in no case will CREATEK be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of its products.

Specifications are subject to change without notice © Copyright 2009,CREATEK Microelectronics **© CREATEK**® is a registered trademark of CREATEK Microelectronics All rights reserved